
FedFast: Going Beyond Average for Faster Training of Federated
Recommender Systems

Khalil Muhammad∗, Qinqin Wang∗, Diarmuid O‘Reilly-Morgan∗, Elias Tragos∗, Barry Smyth∗,
Neil Hurley∗, James Geraci†, Aonghus Lawlor∗

{first.last}@insight-centre.org;james.geraci@samsung.com
∗Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland

†Samsung Electronics Co., Ltd., Seoul, Republic of Korea

ABSTRACT
Federated learning (FL) is quickly becoming the de facto standard
for the distributed training of deep recommendation models, us-
ing on-device user data and reducing server costs. In a typical FL
process, a central server tasks end-users to train a shared recommen-
dation model using their local data. The local models are trained
over several rounds on the users’ devices and the server combines
them into a global model, which is sent to the devices for the pur-
pose of providing recommendations. Standard FL approaches use
randomly selected users for training at each round, and simply av-
erage their local models to compute the global model. The resulting
federated recommendation models require significant client effort
to train and many communication rounds before they converge to a
satisfactory accuracy. Users are left with poor quality recommenda-
tions until the late stages of training. We present a novel technique,
FedFast, to accelerate distributed learning which achieves good
accuracy for all users very early in the training process. We achieve
this by sampling from a diverse set of participating clients in each
training round and applying an active aggregation method that
propagates the updated model to the other clients. Consequently,
with FedFast the users benefit from far lower communication costs
and more accurate models that can be consumed anytime during
the training process even at the very early stages. We demonstrate
the efficacy of our approach across a variety of benchmark datasets
and in comparison to state-of-the-art recommendation techniques.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks.

KEYWORDS
recommender systems, federated learning, active sampling, faster
training, communication costs

ACM Reference Format:
Khalil Muhammad∗, Qinqin Wang∗, Diarmuid O‘Reilly-Morgan∗, Elias
Tragos∗, Barry Smyth∗, Neil Hurley∗, James Geraci†, Aonghus Lawlor∗.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403176

2020. FedFast: Going Beyond Average for Faster Training of Federated
Recommender Systems. In Proceedings of the 26th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD ’20), August 23–27,
2020, Virtual Event, CA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3394486.3403176

1 INTRODUCTION
Recommender systems (RS) help users discover the most useful
information or service at the right time and in the most appropriate
way. They do this by learning the tastes and preferences of users,
thus creating a trade-off between the benefits of personalisation
and the privacy costs that come with the reliance on personal
data. Indeed, with recent changes in data privacy laws, increased
regulation (e.g. GDPR), and a growing unease amongst the general
public about how their personal data is collected and used, it has
become increasingly important for RS to seek a better balance
between personalisation and privacy [27].

Additionally, the requirements of training complex RS models
for millions of users and items on a central server raises scalability
issues and requires significant computing and storage resources, as
well as high server maintenance costs for companies. Fortunately,
Federated Learning [20] addresses these concerns by facilitating
the decentralised training of RS. In such federated recommender
systems, users collaboratively train the model without sharing their
personal data with a centralised server or with other users. This
means that training and inference can be executed locally on user
devices using simple models. The opportunity of combining recent
advances in neural recommender systems [6, 13] and FL [20] moti-
vates the problem tackled in this paper.

Problem statement. Most existing applications of FL in recom-
mender systems focus on improving both accuracy and privacy
[2, 4]. While FL can train a global model without the users’ data
leaving their devices, the extent to which FL can be considered
a privacy-preserving method is debatable since private informa-
tion can still be inferred from the model parameters [21]. Another
noteworthy issue with FL systems is that users tend to incur the
majority of the costs involved in training the model. Specifically,
there is a potential for users to experience performance degrada-
tion and an increase in communication payload during the training
process. These issues can easily frustrate users and ultimately re-
duce the acceptance of the recommender system, especially if they
have to wait for a long time to enjoy good quality, personalised
recommendations. Hence, it is important for developers of FL al-
gorithms to understand the trade-offs required to make faster and
more accurate federated recommender systems.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1234

https://doi.org/10.1145/3394486.3403176
https://doi.org/10.1145/3394486.3403176
https://doi.org/10.1145/3394486.3403176

Our motivation is to develop a more efficient method for the
faster training of RS models in a federated setting so that users can
enjoy accurate recommendations without expending unnecessary
effort and enduring high communication costs.

Contribution. Thus, we propose FedFast, an anytime [11] frame-
work that speeds up the convergence rate of recommendation mod-
els while guaranteeing that users benefit from more accurate rec-
ommendations even before the training process is complete. The
agility of FedFast stems from two novel components: (i) ActvSAMP
to better choose the users that participate in each round of train-
ing, and (ii) ActvAGG to combine locally trained models in a smart
manner that speeds up the training process.

Scope. In this work we extend the familiar Federated Averaging
algorithm FedAvg [20] to increase its convergence speed. Although
we describe our proposed solution (FedFast) in the context of a
relatively straightforward neural recommendation model (GMF),
FedFast can easily be applied on more sophisticated models that
rely on learned user and item embeddings. Accordingly, we evaluate
FedFast on four real-world data sets to show its superiority over
FedAvg and its competitiveness compared to centrally trained state
of the art GMF [13] and BPR [24] models.

Overall, in this work we aim to answer these research questions:
(RQ1) can FedFast consistently outperform FedAvg in recommen-
dation quality across all rounds of training to quality as an anytime
algorithm? (RQ2) Does FedFast converge faster than FedAvg to
reach a similar or better recommendation accuracy on the same
recommendation task? (RQ3) How sensitive is FedFast to its hyper-
parameters in terms of convergence speed and recommendation
accuracy? (RQ4) how significant are contributions of ActvSAMP
and ActvAGG to FedFast?, and finally (RQ5) does FedFast behave
consistently across different datasets?

2 RELATEDWORK
Matrix Factorisation (MF) [17] has provided a strong foundation
for developing accurate collaborative filtering (CF) recommender
systems for the last decade. Lately, there is a trend to improve MF
by exploiting deep neural networks (DNNs) for modelling extra
information, such as text, images, and sound [28]. Approaches for
DNN in RS include [6, 12, 13]. Many of these approaches have
significantly improved the performance of standard RS algorithms,
however their main characteristic is that they are centralised, not
scalable as the number of users and items increase and require users
to share their personal data with the server, which then stores and
processes them for training the DNN models.

To improve scalability and overcome the need for central collec-
tion of data, a new method for training machine learning models in
a collaborative and distributed way has emerged, named Federated
Learning (FL) [15, 20, 20]. It works by initialising a global model
and starts an iterative process, where at the start of each round,
the server selects a subset of existing clients to locally train and
update the model with their on-device data. The clients send these
updates to the server, which then aggregates the received updates
to supplant the weights of the global model. This process continues
until the model has been fully trained.

Despite FL being a promising technique, its application on RS
has not received much attention. Recently, Chen et al. [4] proposed
a federated meta-learning framework that shares user information
at an algorithm level. This approach differs from the conventional
FL algorithm [20] that adopts federated averaging to share infor-
mation at a model level. Chen et al. [4] claim that their approach
outperforms unifiedmodels built on [20] and standalone algorithms,
in recommendation accuracy and is also more efficient in terms
of model sizes. Even more recently, Ammad et al. [2] developed a
federated collaborative filtering algorithm for personalised recom-
mendations. In their work, the update to the the model is based on
a stochastic gradient approach. By using an adaptive learning rate,
they are able to achieve a similar recommendation performance
as the standard FL method [20]. In general, it appears that most
existing FL solutions in recommender systems aim to improve pre-
diction accuracy. However, our incentive is to improve the training
process, making it much faster so that the costs incurred by users
(in terms of total battery consumption or performance degradation)
is significantly decreased.

Therefore, we focus on extending [20] to make it more efficient
when training a recommender system model. We propose a novel
strategy for sampling only a subset of all available users to train
a recommendation model without loss of accuracy. Recent works
have demonstrated that effective sampling techniques can signifi-
cantly improve the accuracy and training speed of classic [29] and
deep [5] recommender systems. Since current FL implementations
[3, 20] sample users randomly to participate in the training the
model, we will describe ActvSAMP and ActvAGG as a more effective
sampling strategy.

Figure 1: Architecture of FedFast showing the key compo-
nents and the interactions that are common in a federated
learning system

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1235

Like [2], our work is based on users’ implicit feedback, whereas
[4] is developed in the context of a rating prediction problem. We
focus on improving both accuracy, and convergence speed during
training. We expect that the data locality constraint would enhance
users’ privacy too. Interestingly, we are not aware of any existing
published work that address this training efficiency issue. One first
attempt has started in [10] which aims at sampling users at each
round according to the probability that their data are useful in
that round, achieving a small improvement in the training speed
compared to the state of the art. However, this work requires all
users to do a lot of extra work in order to calculate a valuation
function for the usefulness of their data and to communicate this
to the server at each round.

3 SYSTEM OVERVIEW
Our system, as illustrated in Figure 1, conforms to a client-server ar-
chitecture that is familiar to federated learning systems. Each client
is a user device that can train a lightweight recommendation model
using locally stored private data. The server maintains a global
copy of the recommendation model, and controls the distributed
learning process using two key components: a user sampler and a
model averager. Basically, the user sampler (ActvSAMP) dynamically
chooses clients to partake in training the recommendation model,
whereas the model averager aggregates the parameters learned by
the clients using ActvAGG. We describe below in more depth the
details of the recommendation model and the sampling algorithm.

3.1 The Recommendation Model
A core requirement of our proposed FedFast system is that the
recommendation model is implemented as a neural network that
predicts user preferences from the representations (user and item
embeddings) it learns. It is also desirable for the recommendation
model to be lightweight since its parameters will be frequently
sent back-and-forth between the client and the server. Although
a complex model (e.g. NCF [13]) is likely to provide more accurate
predictions, it will have more parameters to learn, thus imposing
communication and computation costs on the clients.

Figure 2: Architecture of General Matrix Factorisation, GMF

For this reason, we will evaluate our system using the General
Matrix Factorization (GMF) model introduced in [13]. The GMF is
a neural network based on matrix factorisation that predicts the
user-item interaction ŷui , see Figure 2.

The input layer consists of the user vUu and item vIi vectors that
describe the user u and the item i , respectively. Then, a fully con-
nected embedding layer projects the vUu and item vIi vectors (from

the input layer) to their latent vector representations. Here, a user
embedding is analogous to the user’s latent vector pu , whereas an
item embedding corresponds to the item’s latent vector qi . The mul-
tiplication layer applies the mapping function ϕ1 (pu , qi) = pu ⊙ qi
to combine user and item preferences (⊙ denotes the element-wise
product operator). The resulting product vector is fed into at least
one fully-connected layer with a linear activation function to pre-
dict user preferences. GMF is trained by minimising an appropriate
loss function between the predicted rating ŷui and its real value
yui — we use mean squared error for explicit recommendation and
binary cross-entropy for implicit recommendation.

Justifying lightweight recommendation models: The clients in
federated learning can be thin (e.g. smartphones, IoT devices) or
fat (laptops, servers). We prefer to consider a more challenging
task the where clients are thin and have limited bandwidth and
processors. Accordingly, we make a case for mobile-first recommen-
dation models (similar to MobileNets [14]) designed to effectively
maximise accuracy while considering the restricted resources for
an on-device or embedded application. Such models are ideally
small, low-latency, low-power models, parameterised to meet the
resource liabilities for thin devices. Our proposed solution is tai-
lored to deep models that learn user and item embeddings, so there
is a resource-accuracy trade-off due the proportionality between
the the model size and the embedding size. For example, in our
experiments, the GMF model for ML100K1 has 21,009 parameters
and weighs 84.5 kB when the embedding size is 8. But when the
embedding size is 9, the model size grows by 12.4% and the number
of learnable parameters becomes 23,635. This minor increment of
the embedding size only improves the Hit Ratio by 0.6% despite the
model size growing by 12.4%.

3.2 Federating the Recommendation Model
We extend the FedAvg algorithm in [20] by introducing a novel
sampling and aggregation strategy to reduce the communication
rounds required to train the recommendation model.

Parameter Notation: Let K be the set of all clients. We write the
full set of parameters of the recommendation model as w . The
number of parameters depends on the model and includes user and
item embeddings. For an index j, we write w[j], to represent the
jth component of the parameter set, and generalise this notation
to write w[J] for the parameters indexed by any subset J of the
index set. In particular, let U be the set of indices corresponding
to all user embeddings, and for k ∈ K , we will write Uk for the
indices corresponding to the user embeddings associated with client
k , so that U = ∪k ∈KUk . Similarly, write I to represent indices
corresponding to the item embeddings and N to represent all other
non-embedding indices, so that the full set of indices is U ∪ I ∪ N .
We also refer to the item embedding indices that are updated by
client k during a particular round of the algorithm as Ik ⊆ I .

The FedFast algorithm: We formalise our proposal as FedFast,
presented as Algorithm 1. We train the selected recommendation
model (GMF), with parametersw , over a number of rounds t , such
that, at each round, a different subset St ⊂ K ofm clients is selected

1https://grouplens.org/datasets/movielens/100k/

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1236

(using a sampling techniquewe call ActvSAMP) to concurrently train
a copy of the model using their local data. At Line 4, the parameter
α ≤ 1, is the proportion of clients sampled on each round, using a
partition G of the clients into p ≥ 1 clusters. During local training
(referred to as ClientUpdate), each client makes at least one epoch
(or iteration) over their training data to independently improve the
model, and returns its updated parameters,wk

t+1 and the number
of training samples used, nk . Then, at the end of each round, the
server aggregates (using a technique we call ActvAGG) all the locally
trained modelswk

t+1 to update the global recommendation model.
Note that during the aggregation, the users are re-partitioned and
the new client partition is used on the subsequent round.

Algorithm 1: The FedFast algorithm
1 initialisew0, P0, p
2 initialse G0 ← ClusterUsers(K,p, P0)

3 foreach round t = 0, 1, . . . do
4 m ← max(⌈αK⌉, 1)
5 St ← ActvSAMP(K,m,Gt)

6 foreach client k ∈ St in parallel do
7 wk

t+1,nk ← ClientUpdate(k,wt)

8 end
9 γ ← exp(−t) % discount factor

10 wt+1,Gt+1 ← ActvAGG(St ,w
k
t+1,wt ,nk ,p,γ)

11 end

We describe these extensions to the FedAvg algorithm in the
following sections.

3.3 Active Sampling for Client Selection
Clients in a typical RS tend to be heterogeneous with users having
diverse preferences about different items. Even so, it is not un-
common to find groups of clients that share similar characteristics.
This knowledge guides most recommendation algorithms, yet it
remains unexploited in FL for recommender systems. For instance,
the FedAvg algorithm [20] naively samples clients at random.

The motivation for ActvSAMP is that, if users can be grouped
based on their profile similarities, then each group can benefit from
the training experience of their peers that participate in training
the RS model. This within-group exchange of training experiences
(that occurs on the server) should reduce client workloads, reduce
communication rounds to the server, improve recommendation
quality, and increase the convergence speed of the model. Note that,
unlike existing sampling techniques [1, 19, 26], ActvSAMP occurs
on the server and relies on client metadata that guarantees their
anonymity; hence its suitability for federated learning scenarios.

The ActvSAMP algorithm, as formalised in Algorithm 2, depends
on a partition G of the clients into clusters, obtained from the
ClusterUser function. In our implementation, we use the k-means
algorithm for clustering. Initially (cf. Line 2 of Algorithm 1), client
representations, P0, are formed using a set of summary statistics
(e.g. mean and entropy) of their user profiles. Then ActvSAMP, ran-
domly samples one client per cluster in G in a round-robin manner
until there arem clients in the sampling set St . Initialising the FL

approach in this way allows us to pick a fair sample that reflects the
different user communities in the domain. In a practical setting, it
might be more useful to cluster the clients in K using other privacy-
preserving features (e.g. region, device type) that would result in
clusters that reflect the ideal user groups in K . Notwithstanding,
working without such additional features does not discount the
effectiveness of our solution. We will evaluate the use of other
features in future work.

Algorithm 2: ActvSAMP
Data : K : set of all clients

m: number of clients to sample from K
G: cluster of clients.

Result : S , set ofm clients from K
1 p ← |G| % number of clusters in G
2 S ←randomly samplem/p distinct clients from each cluster

in G;
3 return S

In subsequent rounds, ActvAGG returns a new partition of the
clients,G, where the clustering is carried out over the set of user em-
beddings,w[U] (cf. Line 18 of Algorithm 3), ensuring that clusters
consist of clients whose user embeddings are similar.

3.4 Combining trained models using ActvAGG
In conventional federated learning algorithms, e.g. FedAvg, the
global modelwt+1 is updated with the weighted sum of all received
local models (see Equation 1), where nk is the number of local
training examples for client k .

wt+1 =
∑
k ∈St

nk
nσ

wk
t+1, nσ =

∑
k ∈St

nk (1)

There is an opportunity to make this aggregation process more
efficient. Parameter updates learned by any user A can be directly
applied to a similar user B, thus accelerating the learning process
for user B and consequently improving the overall efficiency of the
federated system. Thus, by updating G at the end of each round, we
maintain accurate clusters of clients whose user-embeddings are
highly similar and propagate client updates to all other clients of the
cluster that contains them. This is the essence of our aggregation
strategy, ActvAGG.

ActvAGG combines local models to update the shared global
model in a manner that causes the federated model to converge
faster to a better recommendation quality. We refer to those clients
that partake inmodel training on a particular round as delegates; and
those that do not participate in the training process as subordinate
users or simply subordinates. ActvAGG, as described in Algorithm
3, works by sharing the training progress of delegates with their
subordinates. This sharing is particularly effective in accelerating
learning during early rounds and becomes less important as the
model converges. Hence, we control its impact using a discounting
factor. The algorithm proceeds in the following steps:

Update of non-embedding components: Those components
of the parametersw that do not correspond to either user or item
embeddings are updated in the same manner as the FedAvg algo-
rithm (cf. Line 3 of Algorithm 3).

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1237

Algorithm 3: ActvAGG algorithm
Data : S : sampled clients

∀k ∈ S,wk : model weights for clients
w0: aggregated weights from previous round
nk : number of training instances on client k
p: number of client clusters
γ : averaging discount (for subordinate updates)

Result: w : aggregated weights fromwk , G: client cluster
1 w ← w0
2 % updating non-embedding components
3 w[N] ←

∑
k ∈S

nk
nσ w

k [N], nσ =
∑
k ∈S nk

4 % updating item embeddings
5 initialise ∀k qk [I] ← 0 % matrix of item embedding weights
6 foreach k ∈ S do
7 Ik ← {ℓ ∈ I | |w

k [ℓ] −w0[ℓ]| > 0}
8 qk [Ik] ← |w

k [Ik] −w0[Ik]|

9 end
10 foreach i ∈

⋃
k ∈S Ik do

11 w[i] ← 1∑
k∈S qk [i]

∑
k ∈S q

k [i]wk [i]

12 end
13 % updating delegate embeddings
14 foreach k ∈ S do
15 w[Uk] ← wk [Uk]

16 end
17 % updating subordinate user embeddings
18 G ← ClusterUsers(K,p,w[U])

19 initialise δ [U] ← 0
20 foreach k ∈ S do
21 ck ← дetCluster (G,k)

22 foreach s ∈ ck \ S do
23 δ [Us] ← δ [Us] + (w

k [Uk] −w0[Uk])

24 end
25 end
26 foreach c ∈ G do
27 foreach s ∈ c \ S do
28 w[Us] ← w0[Us] + γ

1
|c∩S |δ [Us]

29 end
30 end
31 returnw , G

Update of item embeddings: In Lines 5 to 12, the item em-
beddings are updated. Each item embedding component, i , of the
aggregated parameters, w[i], is formed as a weighted average of
the parameter valueswk [i] learned by each delegate, where each
delegate’s contribution is proportional to the difference between
wk [i] and the aggregated value from the previous round,w0[i] (cf.
Line 11). Note that delegate k only contributes to those compo-
nents, Ik , that it has updated during this round. In general, the
item-sets Ik overlap and the item embedding components, i , receive
contributions from multiple clients.

Update of delegate embeddings: Since each user is assigned to
a unique client, the user embedding parameters are simply updated

as the values obtained from the delegate responsible for that user
(cf. Line 15).

Re-partitioning: A new client partition, G, is formed, using the
newly obtained user embeddingsw[U] (cf. Line 18).

Update of subordinate embeddings: Each subordinate is up-
dated using the user embeddings of all delegates that share its
cluster. Specifically, for cluster c ∈ G, the average, δc , of the differ-
ences between the user embeddings of the delegates assigned to
that cluster (i.e.wk [Uk], for k ∈ c) and and the aggregated embed-
ding from the previous round,w0[Uk], is obtained (Lines 20 to 25).
Then, these average differences are multiplied by a discount factor,
that decays as the learning progresses and are then added to the
user embeddings of the subordinates (cf. Line 28).

3.5 Algorithm complexity
There is a concern that k-means is unsuitable for large-scale data
due to its time complexity, which is O(ndk+1), where n is the num-
ber of users to be clustered, k is the number of clusters, and d is
the size of the dimensions or embedding size. We are also aware
of the other limitations of k-means, such as: (i) it might not find
the optimal set of clusters, (ii) it works best when the clusters are
spherical, separable and of similar sizes, and (iii) it requires k to
be provided beforehand. That said, the reader should note that our
proposed system does not have a fixed dependency on k-means
so we advocate for more scalable, optimal and efficient clustering
algorithms, e.g. Lloyd’s algorithm (its runtime is O(nkdi), where i
is the number of iterations needed until convergence) or [23].

Even if a more efficient clustering algorithm is employed, the
algorithm complexity is bound to some cost incurred by the server
in grouping users. As we will show in our experiments, this server-
based cost is a trade-off for fewer communication rounds and less
training effort from the clients.

4 EVALUATION
In this section, we evaluate FedFast with the aim of answering the
research questions described in the introduction section.

Datasets.Weexperimentedwith four publicly accessible datasets:
MovieLens 1M2, MovieLens 100K3, TripAdvisor [8], and Yelp 4. We
have summarised the key characteristics of the datasets in Table 1.
All the datasets have been widely used in recommender systems
literature to evaluate collaborative filtering algorithms.

Dataset Interaction# Item# User# Density
ML1M 1,000,209 3,706 6,040 4.5%
ML100K 100,000 1,628 943 6.3%
TripAdvisor 25,340 1,861 3,985 0.34%
Yelp 79,087 9,323 7,975 0.11%

Table 1: Statistics of the evaluation datasets

Note that the TripAdvisor dataset of hotel ratings was obtained
from [8]. We pre-processed all evaluation datasets by only retaining
users that have rated at least 5 items and, further, we transformed
2http://grouplens.org/datasets/movielens/1m/
3http://grouplens.org/datasets/movielens/100K/
4https://www.yelp.com/dataset/challenge

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1238

the explicit ratings into implicit signals where each entry is marked
as 0 or 1 indicating whether the user has rated the item.

Evaluation Protocols. For performance evaluation, we use
leave-one-out protocol, which is widely used [7]. For each user,
we held-out their latest interaction for the test set and used the
remaining data for training. Since it is too time-consuming to rank
all items for every user during evaluation, we followed the common
strategy [9, 16] that randomly samples 50 items that are not inter-
acted with by the user, ranking the test item among the 50 items.
The performance of a ranked list is judged by Hit Ratio (HR) [7] and
Normalized Discounted Cumulative Gain (NDCG)5. We truncated
the ranked list at 10 for both metrics. As such, the HR intuitively
measures whether the test item is present on the top-10 list, and
the NDCG accounts for the position of the hit by assigning higher
scores to hits at top ranks. We calculate both metrics for each test
user and report the average score. Unless stated otherwise, we use
the same hyper-parameters of FedAvg in FedFast, except for p, the
number of client clusters constructed from user embeddings.

Baselines. We compare our proposed FedFast solution with
the popular FedAvg method using GMF as the recommendation
model. Recall that FedFast is designed to improve FedAvg in its
sampling (ActvSAMP) and aggregation (ActvAGG) components.

Our evaluation target is to compare convergence speed and
recommendation quality in a federated context, so we leave out
comparison with other classical centralised algorithms because
they are not easily amenable to work with federated learning. And
since our solution, FedFast, is scoped to embedding-based models,
we also leave out autoencoder-based recommendation models such
as [25]. Since the operations (e.g. model averaging) that combine
distributed trained models can affect their recommendation per-
formance, we highlight the centrally-trained BPR [24] and GMF as
upper-bounds for the recommendation accuracy of FedFast and
FedAvg.

4.1 Performance Comparison (RQ1, RQ5)
The aim of this experiment is twofold: (i) to compare the perfor-
mance of our proposed FedFast with the standard FL method
FedAvg, and (ii) to compare FedFast with a centrally trained (GMF)
version of themodel it federates. For completeness, we also compare
the aforementioned algorithms with a centrally-trained BPR algo-
rithm. These comparisons should allow the reader to understand
the trade-offs in training distributed recommendation models, one
of which is compromising recommendation accuracy for privacy
due to data locality.

Note that we do not aim to set a new state-of-the-art performance
record, but rather to show how FedFast outperforms FedAvg as a
FL method. Furthermore, because of our self-imposed constraint to
use lightweight models, we will deliberately force all algorithms to
have the same embedding (or factor) size of 10. We also run FedAvg
and FedFast with the same hyper-parameters, but our choice for
FedFast’s p hyper-parameter is the default (p = 20). Table 2 shows
the performance of FedFast in comparison to the other baselines
measured by HR@10 and NDCG@10, respectively.

5NDCG is a commonly used ranking-based metric that emphasises the importance of
the top ranks by logarithmically discounting ranks

Federated Centralised
FedFast FedAvg GMF BPR

ML100K HR 0.89 0.79 0.91 0.92
NDCG 0.62 0.51 0.42 0.30

ML1M HR 0.71 0.60 0.61 0.86
NDCG 0.44 0.35 0.34 0.29

TripAdvisor HR 0.50 0.42 0.45 0.51
NDCG 0.26 0.22 0.24 0.20

Yelp HR 0.62 0.23 0.71 0.81
NDCG 0.36 0.11 0.45 0.28

Table 2: Recommendation performance for FedFast, FedAvg
and the centrally-trained baselines GMF and BPR. Conver-
gence plots for these results are presented in Figure 3.

Looking at Table 2, it is immediately obvious that FedFast con-
sistently outperforms the FedAvg federated baseline. In theML100K,
this improvement is marginal possibly due to the dataset’s high den-
sity. We attribute FedFast’s superiority over FedAvg to be caused
by our proposed ActvSAMP and ActvAGG.

Recall that, in all experiments throughout this paper, both FedAvg
and FedFast use GMF as their underlying recommendation model.
The expectation is that the recommendation quality from a cen-
trally trained GMF model would be an upper-bound for FedAvg and
FedFast. Interestingly, there were cases where both FedAvg and
FedAvg performed competitively with GMF. No surprise, FedFast
also performed better than FedAvg in this comparison; and in some
cases FedFast is better than GMF.

The BPR algorithm is arguably a state-of-the-art in ranking-based
implicit recommendation tasks. Admittedly, BPR could be tuned bet-
ter to improve its results, although what we report is within an
acceptable range of its performance. Our FedFast algorithm out-
performs BPR on NDCG in the ML1M and TripAdvisor datasets, but
more often than not, BPR tends to have a better recommendation
quality than other algorithms. Generally, these results tell us that
training recommendationmodels in a distributed setupmight afford
us some benefits for data locality and scalability, but that comes
at a cost of degraded recommendation quality. We further con-
ducted one-sample paired t-tests, verifying that all improvements
are statistically significant for p < 0.01

4.2 Convergence Analysis (RQ2, RQ5)
To validate our claim of improved training efficiency, we com-
pare the convergence of FedFast with FedAvg that does not use
ActvSAMP and ActvAGG. For this comparison, we set up the exper-
iment as described in Section 4.1, and the results are shown in
Figure 3.

Both FedAvg and FedFast models start from the same HR@10
and NDCG@10 and FedAvg slowly converges towards it best values
as presented in subsection 4.1. But FedFast converges much more
quickly than FedAvg and settles to within 5% of its best values in all
evaluation datasets. In ML100K, FedFast reached FedAvg’s highest
HR@10 at round 30. This means that clients of FedAvg will have
to endure 94% more communication rounds and expend 94% more
local training effort to enjoy the same performance as the clients
of FedAvg. Naturally, this significant difference in convergence

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1239

Figure 3: Convergence speed between FedFast and FedAvg on the evaluation datasets showing NDCG@10 and HR@10

speed can be attributed to the impact of ActvSAMP and ActvAGG
in FedFast. Interestingly, across all rounds and in all evaluation
datasets, FedFast consistently produces a better model than the
FedAvg baseline. Empirically, this characteristic allows FedFast to
be classified as an anytime algorithm [11]. As a matter of future
work, we will further enhance FedFast to reduce the total number
of users required to train the model across all training rounds.

It is also important to disambiguate between the time it takes to
train a federated model and the number of rounds it takes to reach
an optimal recommendation performance. These quantities are not
necessarily correlated. For instance, in a worst-case scenario, the
clustering process in FedFast could last longer than it takes for
FedAvg to complete its rounds. Of course, this example is purely
hypothetical to draw an example for the reader. We have left this
analysis between training time and communication rounds for
future work.

4.3 Sensitivity of FedFast to number of clusters
(RQ3)

This experiment demonstrates the sensitivity of FedFast to the
number of clusters (p) hyper-parameter. We ran FedFast using the
protocol described in subsection 4.1 but with different values for the
number of clusters, i.e. with p ∈ {5, 10, 20, 40, 60, 100}. The result
of this experiment is presented in Figure 4.

It is immediately obvious that FedFast achieves similar recom-
mendation quality (measured byHR@10 andNDCG@10) regardless
of the number of clusters it takes as a hyper-parameter. The no-
ticeable difference is how fast (measured by Rounds) the different
models get to their best performance. For HR@10, it seems like
the number of rounds is proportional to the size of p. But when
p = 100, it takes much fewer rounds than when p = 5. Whereas,
with NDCG@10, there is no discernible pattern: extreme values for
p cause FedFast to converge slower than otherwise. Our offline

Figure 4: Number of round required for FedFast to achieve
best HR@10 and NDCG@10 using different number of clus-
ters p on the ML100K dataset.

analysis reveals that the ML100K can at best be partitioned into
about 30 clusters using user metadata not fed to the FedFastmodel.

However, since FedFast clusters users (i.e. clients) based on their
latent representations, it is unlikely the expected number of clusters
(i.e. 30) is preserved in the latent space. Notwithstanding, the results
in Figure 4 empirically suggest that the best value for p is closer
to the number of clusters evaluated offline. This observation also
holds true for the other datasets not presented here due to space
constraints. Overall, this experiment shows that FedFast is likely
to converge faster than FedAvg regardless of the value of p. A more
thorough evaluation of this observation is deferred for future work.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1240

4.4 Analysis of the individual impact of
ActvSAMP and ActvAGG (RQ4)

This section analyses the individual contributions of the sampling
(ActvSAMP) and aggregation (ActvAGG) components of FedFast.
Focusing on the ML100K dataset due to space constraints, we use
the results from the experiments described in Section 4.1 to show a
more nuanced view into the enhancements introduced by FedFast
over FedAvg in Figure 5.

FedFast is represented as the red line starting from a HR@10
of 0.21 and ending at 0.89, whereas FedAvg is the blue dashed line
starting also from the same position as FedFast but ending as a 0.79
after 1000 rounds — that is 11% less. When FedAvg is combined with
ActvSAMP, there is hardly any impact on FedAvg. This is because
although ActvSAMP carefully selects good candidates to train the
model, FedAvg’s default aggregation strategy discards the most
potential gains in performance introduced by ActvSAMP.

Figure 5: Contributions of the individual components of
FedFast as an improvement over FedAvg in the ML100K
dataset. FedAvg is almost identical to FedAvg + ActvSAMP

More apparent is the ActvAGG’s contribution to FedAvg (depicted
with the orange line). Impressively, it appears ActvAGG has more
impact on increasing the recommendation quality and also on speed-
ing up performance. Even so, FedFast still outperforms the combi-
nation of FedAvg and ActvAGG, being even faster to reach a good
accuracy level.

In summary, what these results tell us is that ActvSAMP and
ActvAGG are complementary to one another, hence the superiority
of FedFast over FedAvg.

5 DISCUSSION
So far, we have described a strategy for making recommendations
using federated learning recommendation models. We presented
evaluations that prove the performance improvement of our ap-
proach, FedFast, in making accurate and efficient recommenda-
tions in a federated setting: FedFast can offer statistically signifi-
cant improvements over the baselines we tested in evaluations.

Specifically, FedFast employs a novel sampling and aggrega-
tion technique to drastically reduce the number of communication

rounds and clients effort involved in the training of federated rec-
ommender models. The empirical results prove this in four datasets,
showing that the proposed algorithm is dataset agnostic. Although
not presented in this work, the FedFast technique can also be used
with other embedding-based recommendation models, such as NCF
[13]. It also has to be noted that the faster training achievement
does not compromise accuracy, since we have shown that FedFast
outperforms the baseline FedAvg and compares with BPR in some
cases. While these results are consistent across a variety of common
evaluation datasets, we recognise that it would be appropriate to
demonstrate these benefits in the context of a real-life system; this
requires a live-study, but remains a key objective for future work.

It is noteworthy that the GMF recommendationmodel used through-
out this paper is relatively simple. This choice is deliberate because
its simplicity means that it will require less computational effort to
be trained on a user’s device. Consequently, FedFast and FedAvg
are limited by the recommendation performance obtainable from
GMF. The methods presented here, nevertheless, can be extended to
capture more complexities [6] and to leverage additional data prop-
erties, e.g. [9, 18, 22]. We also expect FedFast to work seamlessly
with other recommendation models that are based on deep neural
networks that profile recommendation entities as embeddings.

The proposed FedFast algorithm, similar to all FL algorithms,
requires users to do some extra work and train locally a deep rec-
ommendation model using their own data. The users’ effort per
round is not increased in FedFast compared to the standard FL
models, since users only perform the task of training the model.
In the end, since the training process finishes much faster (i.e. in
fewer communication rounds) than baseline FL models, users are
expected to save a lot of communication and processing resources
using our model. In addition, the ActvSAMP technique is also select-
ing users from each cluster on a round-robin fashion in order to
evenly distribute the load of the local training to users. The server in
the FedFast algorithm is required to do some small extra work for
clustering the users, which is alleviated by the amount of resources
saved with the much faster training process.

In the FL setting, users might have sporadic online presence,
which means that some might be unable to participate in training
the model for long periods of time. If these sporadic users are
ones that contribute a lot to the model training, this could have a
significant effect on the model performance in the baseline scenario.
However, in FedFast, the ActvSAMP process will select similar users
from the same cluster, and so the model performance will remain
unaffected by periods of user dropout. A more detailed analysis of
this scenario is part of a future work.

For future work, we will also focus on improving our solution to
actively minimise the number of clients needed to train the model
to further reduce the communication-related battery consumption.

Although FedFast learns effective user and item representations,
it is still susceptible to the cold start problem since it expects that
the number of users and items are provided during training. The
model has to be retrained, albeit cheaper and faster, to support new
users and items — through transfer learning, the process can reuse
the pre-trained weights of the user and item embeddings.

Finally, while federated learning methods, e.g. FedFast, are vul-
nerable to model inversion attacks, this vulnerability can be mit-
igated through differential privacy and other privacy enhancing

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1241

techniques. Discussing the privacy implications of FL is beyond the
scope of this work and will be investigated in future work.

6 CONCLUSION
We propose FedFast, a method for making accurate distributed rec-
ommendations using deep neural networks and federated learning.
Without compromising on the model’s recommendation accuracy,
FedFast uses a novel sampling technique and a novel aggregation
strategy to demonstrably improve the convergence speed required
to train a federated recommendation model, by exploiting user
profile similarities. We evaluated our technique against standard
centralised and federated learning baselines using four real-world
datasets. Our results show that FedFast outperforms the federated
learning baselines in terms of convergence speed and accuracy.
FedFast reaches the maximum baseline NDCG at least 4 times
faster (in ML100K) than the baseline and in some cases more than
20 times faster (in TripAdvisor). We are also able to get similar
recommendation performance as the centrally trained model and
at most cases comparable to BPR. Future work will consider new
approaches to make the training process even more efficient by
modelling the sampling of users as a reinforcement learning process,
for example. We will also consider more sophisticated models that
improve the accuracy of the underlying recommendation model,
and by extension the its federated version. We will also work on
techniques to minimise the number of users that participate in the
training process without affecting the performance of the model.

ACKNOWLEDGMENTS
This work was supported by Samsung Research, Samsung Electron-
ics Co. Ltd, and Science Foundation Ireland through the Insight
Centre for Data Analytics under grant number SFI/12/RC/2289_P2.

REFERENCES
[1] Marharyta Aleksandrova, Armelle Brun, Anne Boyer, and Oleg Chertov. 2017.

Identifying Representative Users in Matrix Factorization-based Recommender
Systems: Application to Solving the Content-less New Item Cold-Start Problem.
Journal of Intelligent Information Systems 48, 2 (2017), 365–397.

[2] Muhammad Ammad-ud-din, Elena Ivannikova, Suleiman A. Khan,Were Oyomno,
Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated Collaborative
Filtering for Privacy-Preserving Personalized Recommendation System. CoRR
abs/1901.09888 (2019), 1–12. arXiv:1901.09888

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.
CoRR abs/1902.01046 (2019), 1–15. arXiv:1902.01046

[4] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2018. Fed-
erated Meta-Learning with Fast Convergence and Efficient Communication.
arXiv:cs.LG/1802.07876

[5] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On Sampling Strategies
for Neural Network-based Collaborative Filtering. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
New York, USA, 767–776.

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, New York, USA, 191–198.

[7] Mukund Deshpande and George Karypis. 2004. Item-based Top-N Recommenda-
tion Algorithms. ACM Transactions on Information Systems 22, 1 (2004), 143–177.

[8] Ruihai Dong, Michael P O’Mahony, Markus Schaal, Kevin McCarthy, and Barry
Smyth. 2016. Combining Similarity and Sentiment in Opinion Mining for Product
Recommendation. Journal of Intelligent Information Systems 46, 2 (2016), 285–312.

[9] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A Multi-View Deep
Learning Approach for Cross Domain User Modeling in Recommendation Sys-
tems. In Proceedings of the 24th International Conference on World Wide Web

(WWW ’15). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 278–288.

[10] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj
Kumar. 2019. Active Federated Learning. arXiv:1909.12641

[11] Joshua Grass and Shlomo Zilberstein. 1996. Anytime Algorithm Development
Tools. ACM SIGART Bulletin 7, 2 (Apr 1996), 20–27.

[12] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng
Chua. 2018. Outer Product-based Neural Collaborative Filtering. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, Vol. abs/1808.03912.
IJCAI, Stockholm, Sweden, 2227–2233.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference onWorld Wide Web. International WorldWideWeb Conferences Steer-
ing Committee, International World Wide Web Conferences Steering Committee,
Geneva, Switzerland, 173–182.

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks forMobile Vision Applications.
arXiv:cs.CV/1704.04861

[15] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies
for Improving Communication Efficiency. arXiv:cs.LG/1610.05492

[16] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted Col-
laborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, ACM, New York,
USA, 426–434.

[17] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (Aug 2009), 30–37.

[18] Bin Li, Qiang Yang, and Xiangyang Xue. 2009. Transfer Learning for Collaborative
Filtering via a Rating-matrix Generative Model. In Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, New York, USA, 617–624.

[19] Nathan N. Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. 2011. Wisdom of
the Better Few: Cold Start Recommendation via Representative Based Rating
Elicitation. In Proceedings of the Fifth ACM Conference on Recommender Systems.
ACM, ACM, New York, USA, 37–44.

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, Aarti Singh and Xiaojin (Jerry) Zhu (Eds.),
Vol. 54. PMLR, Fort Lauderdale, USA, 1273–1282.

[21] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. 2019 IEEE Symposium on Security
and Privacy 1, 1 (May 2019), 1–15.

[22] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. 2010. Transfer
Learning in Collaborative Filtering for Sparsity Reduction. In Proceedings of the
24th Conference on Artificial Intelligence. AAAI Press, Atlanta, Georgia, 230–234.

[23] Dan Pelleg and AndrewW. Moore. 1999. Accelerating Exact k-means Algorithms
with Geometric Reasoning. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, New York, USA,
277–281.

[24] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceed-
ings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI Press,
Montreal, Canada, 452–461.

[25] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web. Association for Computing Machin-
ery, New York, USA, 111–112.

[26] Lei Shi, Wayne Xin Zhao, and Yi-Dong Shen. 2017. Local Representative-Based
Matrix Factorization for Cold-Start Recommendation. ACM Transactions on
Information Systems 36, 2 (2017), 22:1–22:28.

[27] Bo Zhang, Na Wang, and Hongxia Jin. 2014. Privacy Concerns in Online Recom-
mender Systems: Influences of Control and User Data Input. In 10th Symposium
On Usable Privacy and Security ({SOUPS} 2014). USENIX Association, Menlo
Park, CA, 159–173.

[28] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Computing Surveys
(CSUR) 52, 1, Article 5 (Feb 2019), 38 pages.

[29] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-N
Collaborative Filtering via Dynamic Negative Item Sampling. In Proceedings of
the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, New York, USA, 785–788.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1242

http://arxiv.org/abs/1901.09888
http://arxiv.org/abs/1902.01046
http://arxiv.org/abs/cs.LG/1802.07876
http://arxiv.org/abs/1909.12641
http://arxiv.org/abs/cs.CV/1704.04861
http://arxiv.org/abs/cs.LG/1610.05492

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 The Recommendation Model
	3.2 Federating the Recommendation Model
	3.3 Active Sampling for Client Selection
	3.4 Combining trained models using ActvAGG
	3.5 Algorithm complexity

	4 Evaluation
	4.1 Performance Comparison (RQ1, RQ5)
	4.2 Convergence Analysis (RQ2, RQ5)
	4.3 Sensitivity of FedFast to number of clusters (RQ3)
	4.4 Analysis of the individual impact of ActvSAMP and ActvAGG (RQ4)

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

